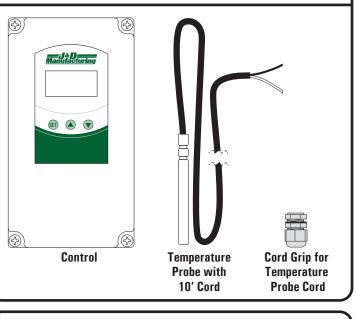


JDDT1 - Single Stage Digital Thermostat with NTC Style Temperature Probe

The JDDT1 Digital Temperature Switch with NTC Style Temperature Probe combines reliability and an installation friendly weatherproof enclosure. Programming parameters can be quickly completed using the front keys. In order to prevent tampering from unauthorized users, a parameter lock physical jumper and software pass-code security are standard in the unit. The bright, easy-to-read LED display shows the current output status and the temperature measurement.


The multiple conduit knockouts on the JDDT1 give flexibility to the installer to determine the best location for the conduit entry. Another installation friendly feature of the JDDT1 is the ability to quickly jumper the line voltage to the common of the output relay using female disconnects.

RECOMMENDED TOOLS FOR INSTALLATION (NOT PROVIDED) Safety Glasses ¹/₄" Flat Head Screwdriver Drill Bit & Drive Bit (compatible with Drill with chosen mounting hardware) #2 Phillips Screwdriver

WARRANTY

J&D Mfg. warrants all products are free from defects in materials and workmanship under normal use for the period of one year from date of purchase and our warranty does not cover normal or regular wear and tear. J&D Mfg can repair or replace at our option, any product or part of the product that is found to be defective. Our warranty applies to materials only and does not include return freight, delivery, loss or damage to personal property, cost of removal or installation, any incidental or consequential damages or labor. This warranty does not apply to products which are misused, abused, altered, improperly installed or subject to negligence. All warranties must be approved through our warranty department. The original purchaser must present a copy of the invoice for the defective product. One year is our standard warranty unless specified on our literature or in the installation instructions/user manuals.

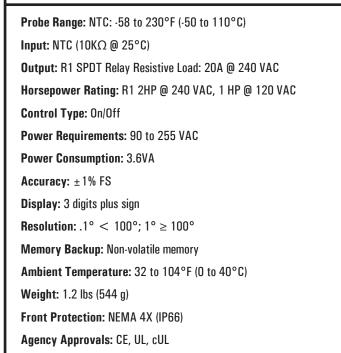
PARTS LEGEND

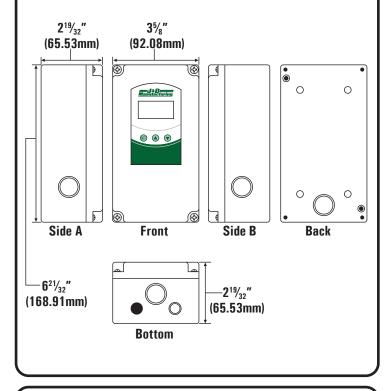
RECOMMENDED (NOT INCLUDED) PARTS

Input Power Cord

Cord Grip* for Output Power Cord

*To maintain weather proof enclosure status, ALL entering and exiting wiring requires properly sized watertight cord grips (not provided).


For quick jumper option Female Disconnects (not provided) are needed.


INSTALLATION HARDWARE IS NOT PROVIDED

INSTALLATION

Please read over all instructions carefully before you begin. If you have any questions please call your local dealer, or contact J&D Manufacturing at 1-800-998-2398.

SPECIFICATIONS

MOUNTING LOCATION REQUIREMENTS

JDDT1 control should be located in a place free of vibrations, impacts, and corrosive gases.

ALL ELECTRICAL WORK SHOULD BE COMPLETED BY QUALIFIED PERSONNEL AND MEET NATIONAL (NEC), REGIONAL AND LOCAL ELECTRIC CODES.

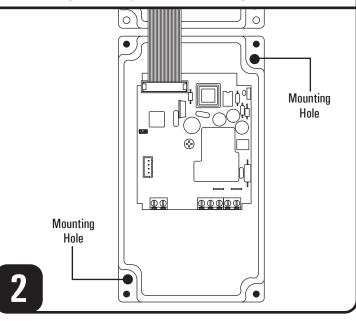
OPENING ENCLOSURE

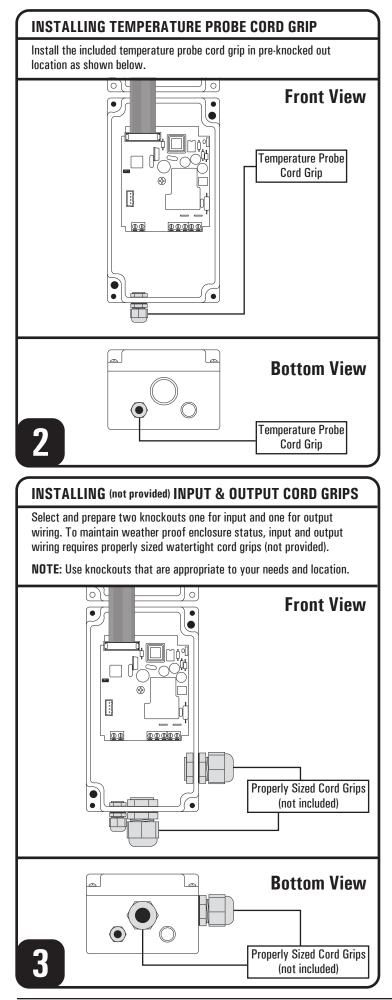

Using a #2 Phillips Screwdriver, unscrew the 4 screws that secure the control enclosure cover and base together.

0

6

0

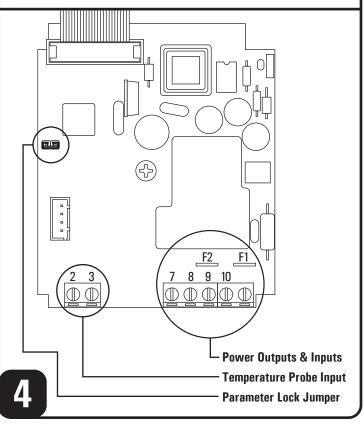

•



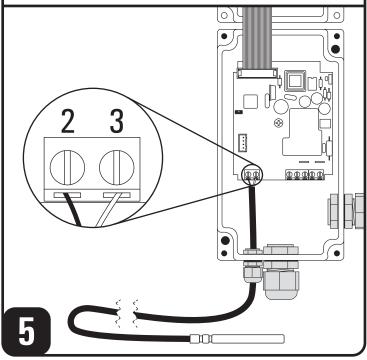
MOUNTING CONTROL

Secure the JDDT1 control to your selected location using the (2) indicated mounting holes and appropriate (not included) hardware.

Mounting hardware must be able to support the weight of the JDDT1, 1.2 lbs (544 g) and be compatible with the mounting surface/structure.



IDENTIFYING WIRING & PROGRAMMING LOCATIONS

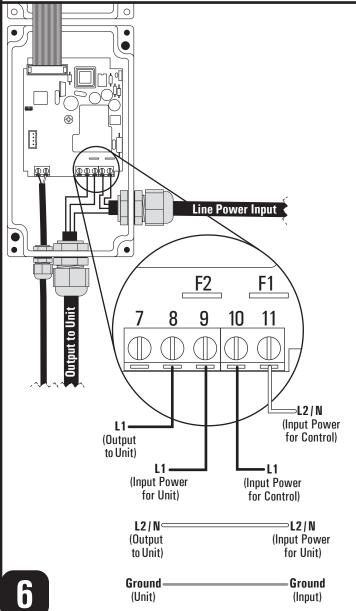

Use the below illustration and call-outs to identify the areas for the future steps of installation.

NOTE: Numbers indicated below and in future steps are to identify the inputs and outputs for ease of installation, <u>the contacts are not labeled in</u> the control.

INSTALLING THE TEMPERATURE PROBE

Thread end of temperature probe through previously installed cord grip. Using a %'' Flat Head Screwdriver secure the temperature probe wires to 2 and 3 connector as shown below.

If powering unit separate from control, proceed to Step 6.

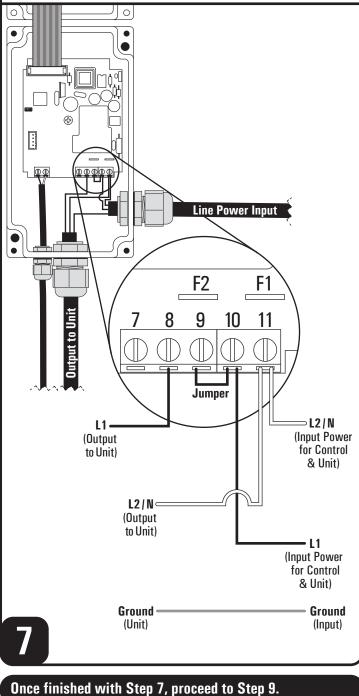

If power for unit is run through control AND input wire is 14 AWG or smaller, proceed to <u>Step 7</u>.

If power for unit is run through control AND input wire is 12 AWG or larger, proceed to <u>Step 8</u>.

WIRING POWER TO UNIT SEPARATE FROM CONTROL

Thread ends of Line Power Input and Output to Unit through previously installed cord grip. Following the table and illustration below, use a $\frac{1}{4}$ " Flat Head Screwdriver to secure wires, as shown.

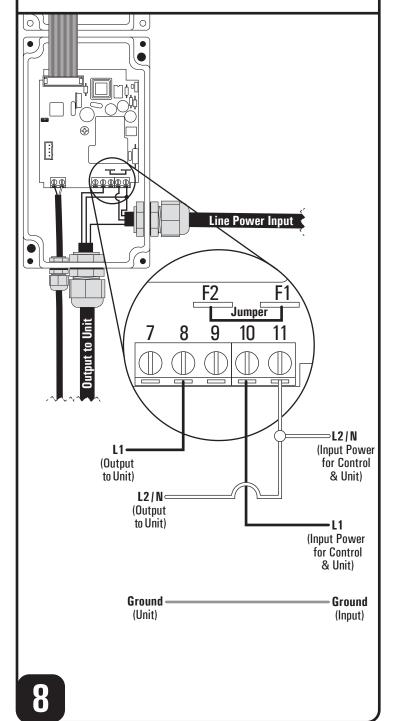
Ground (Input)	Ground (Unit)
L2 / N (Input Power for Unit)	L2 / N (Output to Unit)
L1 (Output to Unit)	8
L1 (Input Power for Unit)	9
L1 (Input Power for Control)	10
L2 / N (Input Power for Control)	11



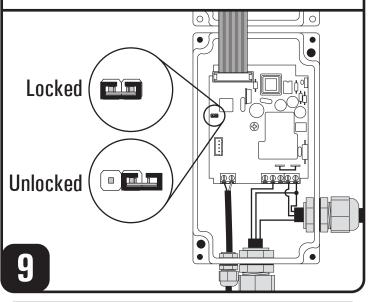
Once finished with <u>Step 6</u>, proceed to <u>Step 9</u>.

WIRING POWER THROUGH CONTROL TO UNIT WITH AN INPUT WIRE OF 14 AWG OR SMALLER

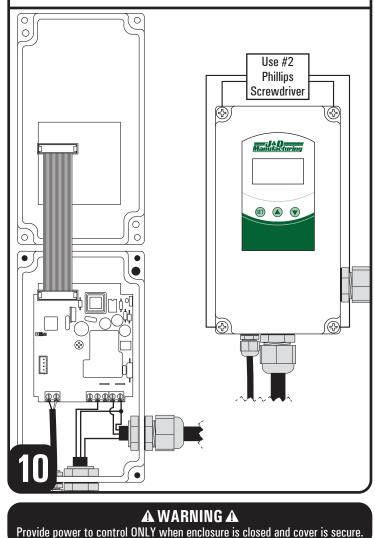
Thread ends of Line Power Input and Output to Unit through previously installed cord grip. Following the table and illustration below, use a $\frac{1}{4}$ " Flat Head Screwdriver to secure wires, as shown.


L2 / N (Input Power for Control & Unit)	11
L2 / N (Output to Unit)	11
L1 (Input Power for Control & Unit)	10
Jumper	9 to 10
L1 (Output to Unit)	8
Ground (Input)	Ground (Unit)

WIRING POWER THROUGH CONTROL TO UNIT WITH AN INPUT WIRE OF 12 AWG OR LARGER


Thread ends of Line Power Input and Output to Unit through previously installed cord grip. Following the table and illustration below, use a $\frac{1}{4}$ " Flat Head Screwdriver and (2) Female $\frac{1}{4}$ " Disconnects (not provided) to secure wires, as shown.

L2 / N (Input Power for Control & Unit)	11
L2 / N (Output to Unit)	11
L1 (Input Power for Control & Unit)	10
L1 (Output to Unit)	8
Jumper	F1 to F2
Ground (Input)	Ground (Unit)

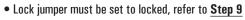

UNLOCK CONTROL FOR PROGRAMMING

In order to adjust parameter values, the parameter lock jumper must be set in unlocked position, as shown below.

CLOSE ENCLOSURE

Using a #2 Phillips Screwdriver, screw the 4 screws that secure the control enclosure cover and base together.

ACCESSING & SECURING PARAMETERS


To allow access (unlock) ALL parameters

- Lock jumper must be set to unlocked, refer to **<u>Step 9</u>**
- Parameter Access Code must be correct, see **<u>Step 12</u>**
 - Control access code comes factory preset at O
 - If you have customized the control access code, you will need to enter it for access

To allow access (unlock) to ONLY the SP, Set Point, parameter

- Lock jumper must be set to unlocked, refer to Step 9
- Parameter Access Code must be customized and with any number from 1-99, see <u>Step 12</u>

To block access (lock) ALL parameters

ENTERING PARAMETER ACCESS CODE TO UNLOCK ALL PARAMETERS

• Press SET for 8 seconds. The access code value 0 is shown on the display.

If this is initial setup or if you chose to keep the factory set code of O

• Press SET to confirm 0 as the code. -The first parameter reference, SP (Set Point), will be shown on the display.

If you have already customized the H5 Parameter Access Code

 Use the UP and DOWN keys to increase the number to match your custom code, then press SET to confirm code.
 The first parameter reference, SP (Set Point), will be shown on the display.

If you have customized the H5 Parameter Access Code but cannot remember the chosen code, you can reset the Parameter Access Code to the factory set code of 0.

- Press and hold the SET key and cycle power to the control.
- **NOTE:** Once you have unlocked the parameters <u>1 minute of inactivity</u> will timeout the unlock and the access code will again need to be entered to resume programming.

CUSTOMIZING PARAMETERS

Once parameters are unlocked they can be customized

- Using the UP and DOWN keys, move to the desired parameter you wish to customize.
- Press SET to see the value of the parameter.
- Modify the value with the UP and DOWN keys.
- Press SET to save the new value and return to parameter list.
- Press SET and DOWN to quit programming, or wait 1 minute for TIMEOUT.

PARAMETER LIST & DESCRIPTIONS

	Description	Range
SP	Set Point	r1 to r2
	Temperature desired to regulate the unit	
гO	Differential or Hysteresis	1 to 20°
	Heating:	
	If temperature is \geq SP then output is OFF	
	If temperature is $<$ SP – rO then output is ON	
	Cooling:	
	If temperature is \geq SP + rO then output is ON	
	If temperature is $<$ SP then output is OFF	
r {	Lower Set Point Limit	-50 to 302°F
		-50 to 150°C
-5	Upper Set Point Limit	-50 to 302°F
		-50 to 150°C
90	Heating or Cooling Control	Ht / Co
	Ht = Heating Control	
	Co = Cooling Control	
95	Defrosting Time Remaining	0 to 59 Minutes
	If d2 = 0, defrosting will not start	
	Interval Between Two Defrostings	O to 24 Hours
c0	Minimum Time for Compressor to be OFF	0 to 59 Minutes
	Minimum time for compressor to stop until it	
	can start again.	0.1.04.11
c l	Continuous Cycle Time	O to 24 Hours
	The remaining time for a continuous cold cycle.	0.000 11
52	ON Time of fault cycle, during probe error	0 to 999 Minutes
c3	OFF Time of fault cycle, during probe error	0 to 999 Minutes
	Temperature Units Selection	°C/°F
P۱	Ambient Probe Calibration	-10 to 10°
	If extending probe beyond 10' measure	
	temperature and adjust probe calibration	0 / 00
	Parameter access code (Factory set to 0)	0 to 99
	Selection of Input Probe Type	NTC
F0	Temperature Display Limit	-50 to 302°F
	Maximum temperature shown on the display,	–50 to 150°C
	although the real temperature can be greater.	

INDICATORS & ERROR MESSAGES

Indicators

- This indicates that the output is energized or that the compressor is connected. It waits for the programmed minimum stop time of the compressor.
- This indicates that defrosting is activated.

Error Messages

In normal operation, the probe temperature will be shown.

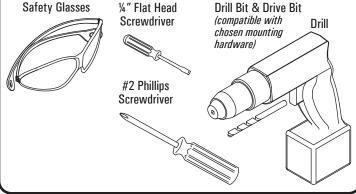
- In case of alarm or error, the following messages will be shown:
 - Er- Memory error
 - -- Shorted-circuited probe error
 - oo- Open probe error

NOTE: If the probe or thermostat memory should fail, the compressor will be connected in accordance to the parameters set in C2 and C3.

MAINTENANCE

After final installation of the JDDT1 Digital Temperature Switch, no routine maintenance is required. A periodic check of system calibration is recommended.

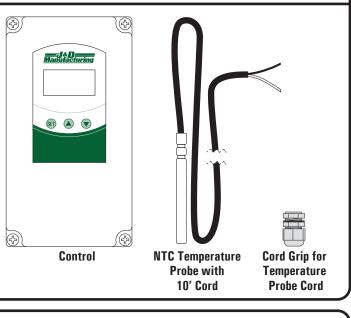
JDDT2 - Dual Stage Digital Thermostat with NTC Style Temperature Probe



The JDDT2 Dual Stage Digital Thermostat with NTC Style Temperature Probe combines reliability and an installation friendly weatherproof enclosure. Programming parameters can be quickly completed using the front keys.

In order to prevent tampering from unauthorized users, a parameter lock physical jumper and software pass-code security are standard in the unit. The bright, easy-to-read LED display shows the current output status and the temperature measurement.

The multiple conduit knockouts on the JDDT2 give flexibility to the installer to determine the best location for the conduit entry. Another installation friendly feature of the JDDT2 is the ability to quickly jumper the line voltage to the common of the output relay using female disconnects.


RECOMMENDED TOOLS FOR INSTALLATION (NOT PROVIDED)

WARRANTY

J&D Mfg. warrants all products are free from defects in materials and workmanship under normal use for the period of one year from date of purchase and our warranty does not cover normal or regular wear and tear. J&D Mfg can repair or replace at our option, any product or part of the product that is found to be defective. Our warranty applies to materials only and does not include return freight, delivery, loss or damage to personal property, cost of removal or installation, any incidental or consequential damages or labor. This warranty does not apply to products which are misused, abused, altered, improperly installed or subject to negligence. All warranties must be approved through our warranty department. The original purchaser must present a copy of the invoice for the defective product. One year is our standard warranty unless specified on our literature or in the installation instructions/user manuals.

PARTS LEGEND

RECOMMENDED (NOT INCLUDED) PARTS

Cord Grip* for Input Power Cord 1-2 Cord Grip/s* for Output Power Cord/s

*To maintain weather proof enclosure status, ALL entering and exiting wiring requires properly sized watertight cord grips (not provided).

For quick jumper option Female Disconnects (not provided) are needed.

INSTALLATION HARDWARE IS NOT PROVIDED

INSTALLATION

Please read over all instructions carefully before you begin. If you have any questions please call your local dealer, or contact J&D Manufacturing at 1-800-998-2398.

SPECIFICATIONS

Probe Range: NTC: -58 to 230°F (-50 to 110°C)

Input: NTC (10KΩ @ 25°C)

Output: R1 SPDT Relay Resistive Load: 20A @ 240 VAC; R2 SPDT Relay Resistive Load: 8A @ 240 VAC, Inductive Load: 3A @ 240 VAC.

Horsepower Rating: R1 2 HP @ 240 VAC, 1 HP @ 120 VAC, R2 1/2 HP @ 240 VAC, 1/4 HP @ 120 VAC

Control Type: On/Off

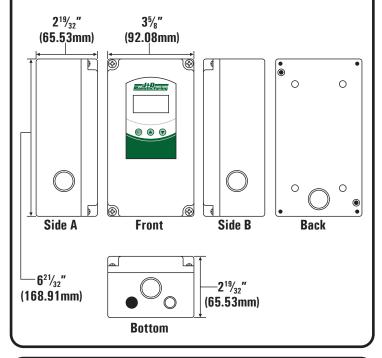
Power Requirements: 90 to 255 VAC

Power Consumption: 3.6VA

Accuracy: ±1% FS

Display: 3 digits plus sign

Resolution: $.1^{\circ} < 100^{\circ}$; $1^{\circ} \ge 100^{\circ}$


Memory Backup: Non-volatile memory

Ambient Temperature: 32 to 104°F (0 to 40°C)

Weight: 1.2 lbs (544 g)

Front Protection: NEMA 4X (IP66)

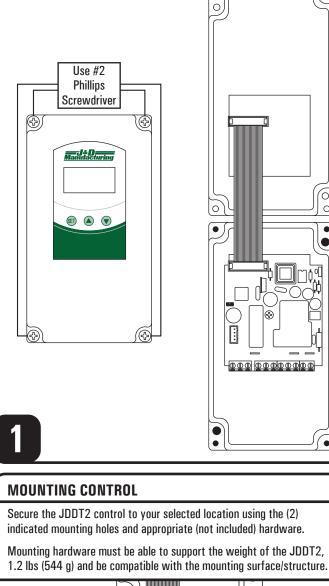
Agency Approvals: CE, UL, cUL

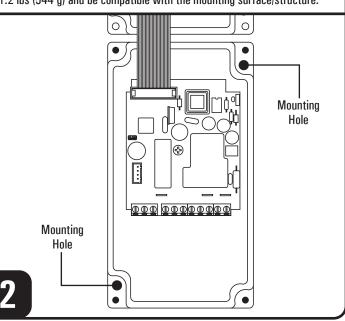
MOUNTING LOCATION REQUIREMENTS

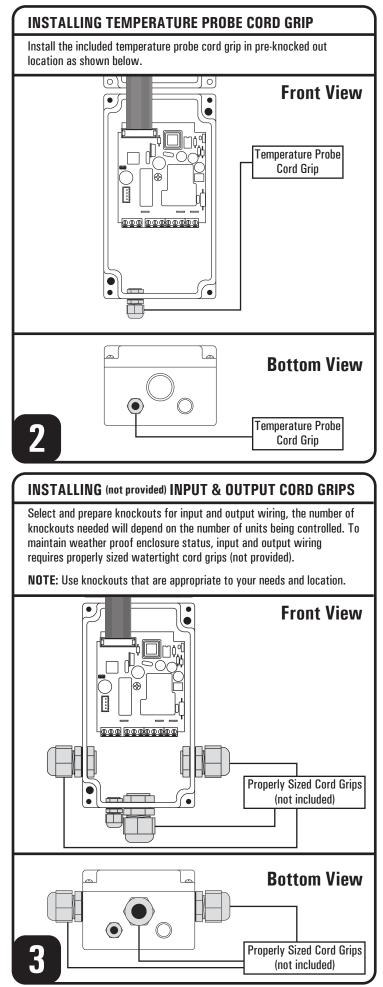
JDDT2 control should be located in a place free of vibrations, impacts, and corrosive gases.

ALL ELECTRICAL WORK SHOULD BE COMPLETED BY QUALIFIED PERSONNEL AND MEET NATIONAL (NEC), **REGIONAL AND LOCAL ELECTRIC CODES.**

Using a #2 Phillips Screwdriver, unscrew the 4 screws that secure the control enclosure cover and base together.

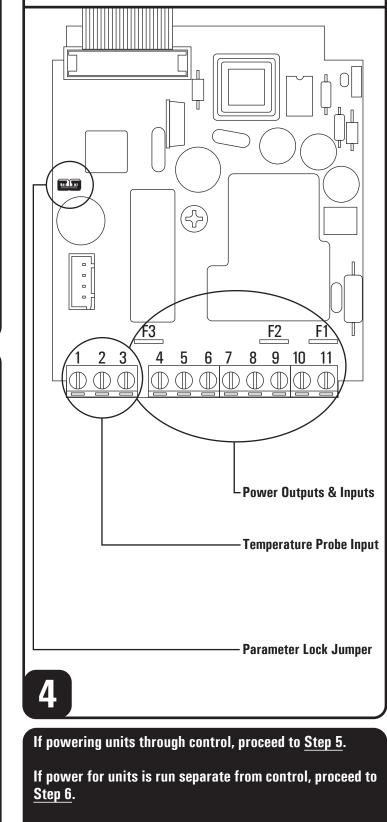

Ο


0


6

0

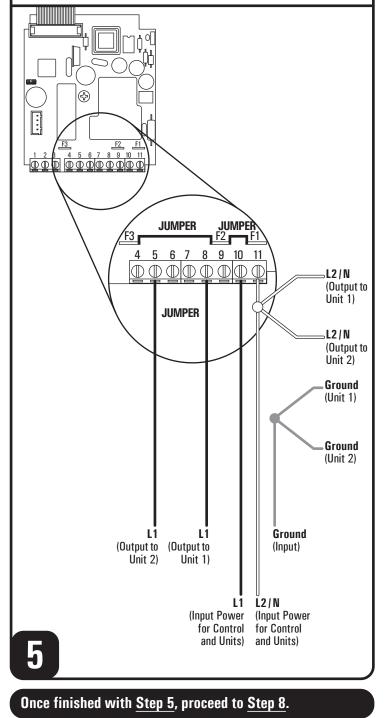
•



IDENTIFYING WIRING & PROGRAMMING LOCATIONS

Use the below illustration and call-outs to identify the areas for the future steps of installation.

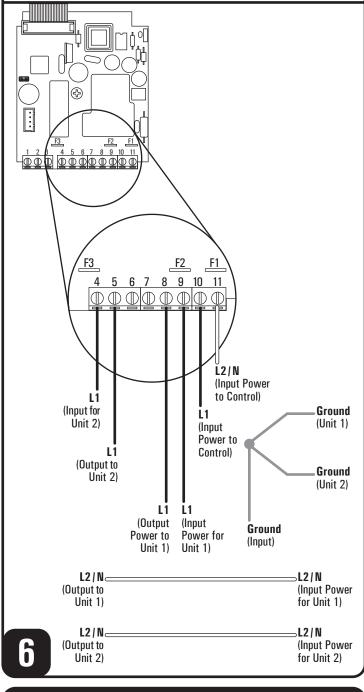
NOTE: Numbers indicated below and in future steps are to identify the inputs and outputs for ease of installation, <u>the contacts are not labeled in</u> the control.



If power for 2 speed unit is run through control, proceed to <u>Step 7</u>.

WIRING POWER THROUGH CONTROL TO UNITS

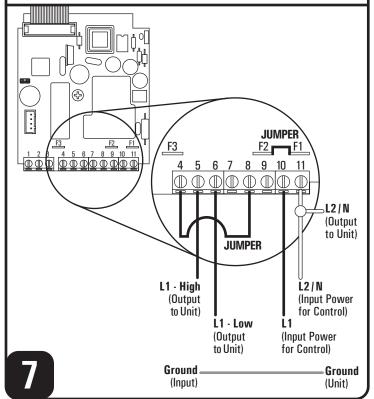
Thread ends of Line Power Input and Output to Unit through previously installed cord grip. Following the table and illustration below, use a $\frac{1}{4}$ " Flat Head Screwdriver to secure wires, as shown.


L2 / N (Input Power for Control & Units)	11
L2 / N (Output to Unit 1)	11
L2 / N (Output to Unit 2)	11
L1 (Input Power for Control & Units)	10
L1 (Output to Unit 1)	8
L1 (Output to Unit 2)	5
Jumper	F1 to F2
Jumper	F2 to F3
Ground (Input)	Ground (Unit 1 & 2)

WIRING POWER TO UNITS SEPARATE FROM CONTROL

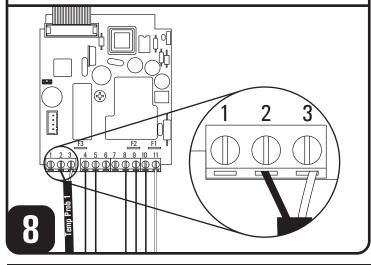
Thread ends of Line Power Input and Output to Unit through previously installed cord grip. Following the table and illustration below, use a $\frac{1}{4}$ " Flat Head Screwdriver to secure wires, as shown.

L2 / N (Input Power to Control)	11
L1 (Input Power to Control)	10
L1 (Input Power for Unit 1)	9
L1 (Input Power to Unit 2)	8
L1 (Output to Unit 1)	5
L1 (Output for Unit 2)	4
L2 / N (Input Power for Unit 1)	L2 / N (Output to Unit 1)
L2 / N (Input Power for Unit 2)	L2 / N (Output to Unit 2)
Ground (Input)	Ground (Unit 1 & 2)



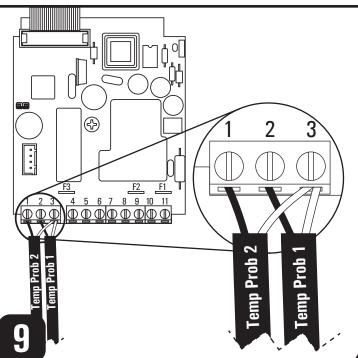
Once finished with <u>Step 6</u>, proceed to <u>Step 8</u>.

WIRING POWER THROUGH CONTROL TO 2 SPEED UNIT

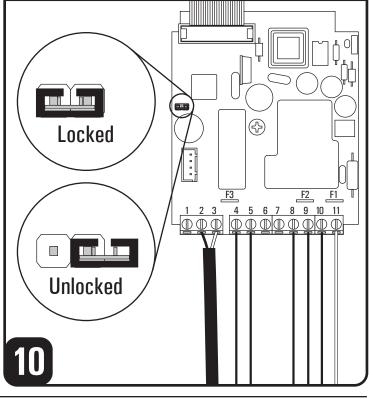

Thread ends of Line Power Input and Output to Unit through previously installed cord grip. Following the table and illustration below, use a $\frac{1}{4}$ " Flat Head Screwdriver to secure wires, as shown.

L2 / N (Input Power for Control & Unit)	11
L2 / N (Output to Unit)	11
L1 (Input Power for Control)	10
L1 - Low (Output to Unit)	6
L1 - High (Output to Unit)	5
Jumper	4 to 8
Jumper	F1 to F2
Ground (Input)	Ground (Unit)

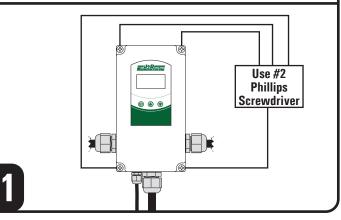
INSTALLING THE TEMPERATURE PROBE


Thread end of temperature probe through previously installed cord grip. Using a $\frac{4}{}$ " Flat Head Screwdriver secure the temperature probe wires to 2 and 3 connector as shown below.

If not installing 2nd optional (not included) temperature probe, proceed to <u>Step 10</u>.


INSTALLING OPTIONAL 2ND TEMPERATURE PROBE

Thread end of (not included) 2nd temperature probe through a (not included) second properly sized installed cord grip. Using a %'' Flat Head Screwdriver secure the temperature probe wires to 1 and 3 connector as shown below.


UNLOCK CONTROL FOR PROGRAMMING

In order to adjust parameter values, the parameter lock jumper must be set in unlocked position, as shown below.

CLOSE ENCLOSURE

Using a #2 Phillips Screwdriver, screw the 4 screws that secure the control enclosure cover and base together.

A WARNING A

Only provide power to control when enclosure is closed and cover is secure.

ACCESSING & SECURING PARAMETERS

To allow access (unlock) ALL parameters

- Lock jumper must be set to unlocked, refer to **Step 9**
- Parameter Access Code must be correct, see **<u>Step 12</u>**
 - Control access code comes factory preset at O
 - If you have customized the control access code, you will need to enter it for access

To allow access (unlock) to ONLY the SP, Set Point, parameter

- Lock jumper must be set to unlocked, refer to Step 9
- Parameter Access Code must be customized and with any number from 1-99, see Step 12

To block access (lock) ALL parameters

• Lock jumper must be set to locked, refer to **Step 9**

ENTERING PARAMETER ACCESS CODE TO UNLOCK <u>ALL</u> PARAMETERS

• Press SET for 8 seconds. The access code value 0 is shown on the display.

- If this is initial setup or if you chose to keep the factory set code of O
 - Press SET to confirm 0 as the code.
 The first parameter reference, SP1 (Set Point 1), will be shown on the display.

If you have already customized the H5 Parameter Access Code

 Use the UP and DOWN keys to increase the number to match your custom code, then press SET to confirm code.
 The first parameter reference, SP1 (Set Point 1), will be shown on the display.

If you have customized the H5 Parameter Access Code but cannot remember the chosen code, you can reset the Parameter Access Code to the factory set code of 0.

• Press and hold the SET key and cycle power to the control.

NOTE: Once you have unlocked the parameters <u>1 minute of</u> <u>inactivity will timeout the unlock</u> and the access code will again need to be entered to resume programming.

CUSTOMIZING PARAMETERS

Once parameters are unlocked they can be customized

- Using the UP and DOWN keys, move to the desired parameter you wish to customize.
- Press SET to see the value of the parameter.
- Modify the value with the UP and DOWN keys.
- Press SET to save the new value and return to parameter list.

RESETTING PARAMETERS TO FACTORY VALUES

- Access parameter HO as explained in programming parameters.
- Value O will be displayed.
- Press SET for 8 seconds. Pro will be displayed if they have been setup correctly.
- Press SET and DOWN to exit setup or wait for 1 minute.

INDICATORS

- OUT1 Indicates relay 1 On or Off as per parameter H2. If H2=dir, with relay 1 On, LED lit, if H2=inv, with relay 1 on, LED off. It blinks when SP1 is displayed.
- OUT2 Indicates relay 2 On or Off as per parameter H3. If H3=dir, with relay 2 On, LED lit, if H3=inv, with relay 2 on, LED off. It blinks when SP2 is displayed.
 - This indicates that the output is energized or that the compressor is connected. It waits for the programmed minimum stop time of the compressor.
 - This indicates that defrosting is activated.

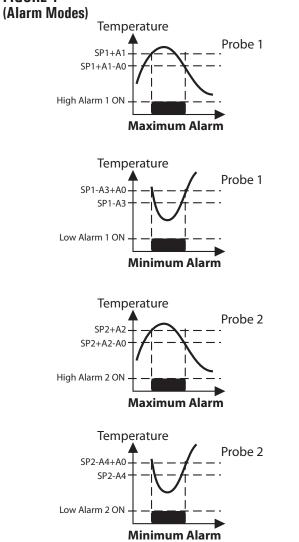
ERROR MESSAGES

In normal operation, the probe temperature will be shown. In case of alarm or error, the following messages will be shown:

- Err Memory reading error
- ErP Error of the probe not shown on the display
- RH 1 Maximum temperature alarm, probe 1
- RL2 Minimum temperature alarm, probe 1
- RL 1 Maximum temperature alarm, probe 2
- RH2 Minimum temperature alarm, probe 2
- ooo Open probe error
- --- Shorted-circuited probe error

SILENCE THE BUZZER

Pressing the SET and DOWN keys simultaneously silences the buzzer. The message of alarm continues appearing in the display.


Press SET and DOWN to quit programming, or wait 1 minute for TIMEOUT.

NOTE: If the probe or thermostat memory should fail, the compressor will be connected in accordance to the parameters set in C2 and C3.

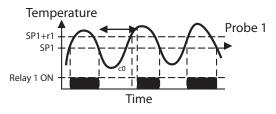
	Description	Range	Factory Preset	Units
Ρł	Set Point 1	r4 to r6	10.0	Degrees
	Temperature desired to regulate the Relay/Unit 1			
P5	Set Point 2	r5 to r7	10.0	Degrees
	Temperature desired to regulate the Relay/Unit 2			
-0	Dependency between SP1 & SP2 Only for mode ON/OFF 1	ind / dep	ind	Option
	ind(ependent)=			
	set point for relay 2, SP2			
	dep(endent) =			
	set point for relay 2, SP1+SP2	0.4 / 00.00		
- {	Differential or Hysteresis for SP1 Temperature differential between	0.1 to 20.0°	1.0	Degree
	ON/OFF of Relay 1 in ON/OFF			
	control			
-5	Differential or Hysteresis for SP2	0.1 to 20.0°	1.0	Degrees
	Temperature differential between ON/OFF of Relay 2 in ON/OFF			
	control			
-3	Band differential	0.1 to 20.0°	1.0	Degrees
	Temperature differential between			
	ON/OFF of Relays 1 and 2 in neutral area control. For Relay 1			
	it is added to SP1 and for Relay 2			
	it is subtracted from SP1.			
-4	Lowest value for SP1	–99.9° to r6	-99.9	Degrees
	Lowest value for SP2	–99.7° to r7	-99.9	Degrees
	Highest value for SP1	r4 to 302°	302	Degrees
-7	Highest value for SP2	r5 to 302°	302	Degree
-8	Regulation or Operating Mode Selection of the operating mode.	On1, On2, nEU	On1	Option
RO	Alarm Differential	0.1 to 20.0°	0.1	Degrees
	Temperature differential between			
71	the alarm On and Off cycle Maximum Alarm Probe 1	0.1 to 00.09	00.0	Dograd
11	Maximum alarm ON when Probe 1	0.1 to 99.9°	99.9	Degrees
	is higher than SP1 + A2			
	Maximum alarm OFF when Probe 1			
	is lower than SP1 + A2–A0	0.1.4-00.00	00.0	Der
92F	Maximum Alarm Probe 2 Maximum alarm ON when Probe 2	0.1 to 99.9°	99.9	Degrees
	is higher than SP2+A2			
	Maximum alarm OFF when Probe 2			
	is lower than SP2+A2–A0			
73	Minimum Alarm Probe 1 Minimum alarm ON when Probe 1	0.1 to 99.9°	99.9	Degrees
	is lower than SP1–A3			
	Minimum alarm OFF when Probe 1			
	is higher than SP1–A3+A0			
74	Minimum Alarm Probe 2 Minimum alarm ON when Probe 2	0.1 to 99.9°	99.9	Degrees
	Minimum alarm ON when Probe 2 is lower than SP2–A4			
	Minimum alarm OFF when Probe 2			
	is higher than SP2–A4+A0			

\bigcap	Description	Range	Factory Preset	Units
RS	Alarm Verification Time Time from the alarm event until it trips *h-m are data in format XX.Y where XX are hours and Y tens of minutes	0.0 to 18.0	18.0	h-m(*)
R6	Alarm Probe 1 Selection (See Figure 1) AHL = Maximum and minimum Alarm Probe 1 enabled Ano = No Alarm Probe 1 AH = Maximum Alarm Probe 1 enabled AL = Minimum Alarm Probe 1 enabled	AHL, Ano, AH, AL	AHL	Option
RT	Alarm Probe 2 Selection (See Figure 1) AHL = Maximum and minimum Alarm Probe 2 enabled Ano = No Alarm Probe 2 AH = Maximum Alarm Probe 2 enabled AL = Minimum Alarm Probe 2 enabled	AHL, Ano, AH, AL	AHL	Option

FIGURE 1

	Description	Range	Factory Preset	Units
с0	Minimum Relay Stop Time Minimum time from the disconnection of a relay until it can be switched on again	0 to 240	0	Minutes
c!	Operation Relay 1 Selection between direct or reverse operation for Relay 1	dir / inv	dir	Option
52	Operation Relay 2 Selection between direct or reverse operation for Relay 2	dir / inv	dir	Option
c3	Default operation Relay 1. In case of failure of Probe 1: oPn = Relay 1 will remain open Clo = Relay 1 will remain closed	Opn / Clo	Opn	Option
сЧ	Default operation Relay 2. In case of failure of Probe 2: oPn = Relay 2 will remain open Clo = Relay 2 will remain closed	Opn / Clo	Opn	Option
PO	Temperature Units Selection	°C/°F	°C	Option
PI	Calibration of Probe 1 If extending probe beyond 328' measure temperature and adjust probe calibration	–20 to 20°	0.0	Degrees
54	Calibration of Probe 2 If extending probe beyond 328' measure temperature and adjust probe calibration	–20 to 20°	0.0	Degrees
P3	Decimal Point If the displayed value of the probes is desired with decimals or not	no / yes	yes	Option
РЧ	Probe to be displayed Probe always on the display The other probe can be seen pressing the keys SET + UP Sd1 = Probe 1 Sd2 = Probe 2	Sd1 / Sd2	Sd1	Option
PS	Number of Probes If P5 = 1, there is no ON/OFF 2 mode. If selected, it will operate as ON/OFF 1.	1/2	1	Option
HO	Factory Reset Values	0	0	Option
HI	Keypad tamper protection To change the settings, enter into parameter and exit again. The protection setting is momentarily released. It switches on again 1 minute after the last time a key was pressed. Yes = Keyboard Protected No = Keyboard non protected	no / yes	no	Option
HS	Operation of OUT1 LED dir (ect) = On when Relay 1 is ON inv (erted) = On when Relay 1 is OFF	dir / inv	dir	Option
НЭ	Operation of OUT2 LED dir (ect) = On when Relay 2 is ON inv (erted) = On when Relay 2 is OFF	dir / inv	dir	Option
ΗЧ	Serial Communication Address Address for computer communication	0-999	0	Range
HS	Parameter Access Code	0-999	0	Range
HG	Selection of Input Probe Type	NTC/PTC	NTC	Option

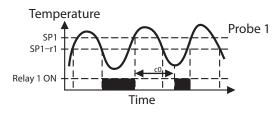
OPERATING MODES


Mode ON OFF1 (On1) with r0=independent

Relay 1 with c1=direct

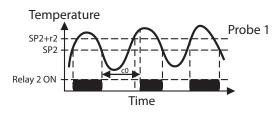
(Figure 2)

Temperature of probe 1 > = SP1 + r1 - Relay 1 ONTemperature of probe 1 < = SP1 - Relay 1 OFF


FIGURE 2

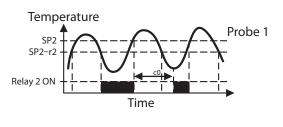
Relay 1 with c1=inverted (reversed) (*Figure 3*)

Temperature of probe 1 < = SP1–r1 \rightarrow Relay 1 ON Temperature of probe 1 > = SP1 \rightarrow Relay 1 OFF


FIGURE 3

Relay 2 with c2=direct (*Figure 4*)

Temperature of probe 1 > = SP2 + r2 - Relay 2 ONTemperature of probe 1 < = SP2 - Relay 2 OFF

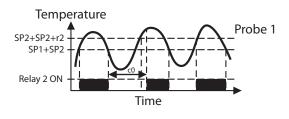

FIGURE 4

Relay 2 with c2=inverted (reversed)

(Figure 5) Temperature of probe 1 < = SP2-r2 --> Relay 2 ON Temperature of probe 1 > = SP2 --> Relay 2 OFF

FIGURE 5

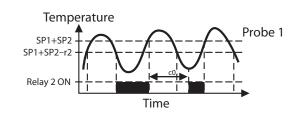
Mode ON OFF1 (On1) with r0=dependent


Output 1 works as an independent ON/OFF control, but output 2 works as follows:

Relay 2 with c2=direct

(Figure 6)

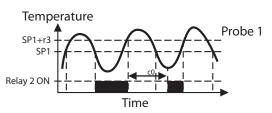
Temperature of probe $1 > = SP1 + SP2 + r2 \implies$ Relay 2 ON Temperature of probe $1 < = SP1 + SP2 \implies$ Relay 2 OFF


FIGURE 6

Relay 2 with c2=inverted (reversed) (*Figure 7*)

Temperature of probe 1 < = SP1+SP2-r2 --> Relay 2 ON Temperature of probe 1 > = SP1+SP2 --> Relay 2 OFF

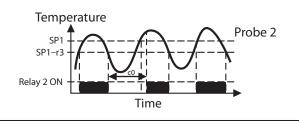
FIGURE 7



Neutral Area Mode (nEU)

Relay 1

(Figure 8) Temperature of probe 1 > = SP1+r3 → Relay 2 ON Temperature of probe 1 < = SP1 → Relay 2 OFF


FIGURE 8

Relay 2

(Figure 9) Temperature of probe 1 < = SP1−r3 → Relay 2 ON Temperature of probe 1 > = SP1 → Relay 2 OFF

FIGURE 9

VIEW SECONDARY (if applicable) PROBE TEMPERATURE

When setting parameters you have the option to choose either probe 1 (Sd1) or probe 2 (Sd2) as the displays standard reading (see P4 in parameters).

To temporarily change the display to view the secondary probe information press SET and UP keys simultaneously. The display will not alternate between temperature reading and probe number (Sd1 or SD2) of secondary probe.

To exit back to the standard display press SET and DOWN , or wait 1 minute for $\ensuremath{\mathsf{TIMEOUT}}$.

OPERATION IN CASE OF ERROR

If probe 1 fails, the operation is through c3. (See Parameter description.) If probe 2 fails, the operation is through c4. (See Parameter description.) In case of memory failure, both relays will remain open.

MAINTENANCE

After final installation of the JDDT2 Dual Stage Digital Thermostat, no routine maintenance is required. A periodic check of system calibration is recommended.